Лекции и учебные пособия по системному анализу

Системный анализ

«Теория систем и системный анализ»

Ю. П. Сурмин

Оглавление    
Глава 8: Отражение систем наукой. «Моделирование систем различной природы» Список используемой и рекомендуемой литературы

8.2. Математическое и кибернетическое моделирование систем

Возможности математического моделирования

Для любого объекта моделирования свойственны качественные и количественные характеристики. Математическое моделирование отдает предпочтение выявлению количественных особенностей и закономерностей развития систем. Это моделирование в значительной мере абстрагируется от конкретного содержания системы, но обязательно учитывает его, пытаясь отобразить систему посредством аппарата математики. Истинность математического моделирования, как и математики в целом, проверяется не путем соотнесения с конкретной эмпирической ситуацией, а фактом выводимости из других предложений [22, с. 90].

Математическое моделирование представляет собой обширную сферу интеллектуальной деятельности. Это довольно сложный процесс создания математического описания модели. Оно включает в себя несколько этапов. Н. П. Бусленко выделяет три основных этапа: построение содержательного описания, формализованной схемы и создание математической модели [3, с. 44-47]. По-нашему мнению, математическое моделирование состоит их четырех этапов:

  1. содержательное описание объекта или процесса, когда выделяются основные составляющие системы, закономерности системы. Оно включает в себя числовые значения известных характеристик и параметров системы;
  2. формулировка прикладной задачи или задачи формализации содержательного описания системы. Прикладная задача содержит в себе изложение идей исследования, основных зависимостей, а также постановку вопроса, решение которого достигается посредством формализации системы;
  3. построение формализованной схемы объекта или процесса, что предполагает выбор основных характеристик и параметров, которые будут использованы при формализации;
  4. превращение формализованной схемы в математическую модель, когда идет создание или подбор соответствующих математических функций.

Исключительно важную роль в процессе создания математической модели системы играет формализация, под которой понимается специфический прием исследования, назначение которого в том, чтобы уточнять знание посредством выявления его формы (способа организации, структуры как связи компонентов содержания) [22, с. 139]. Процедура формализации предполагает введение символов. Как отмечает А. К. Сухотин: «Формализовать некоторую содержательную область, значит построить искусственный язык, в котором понятия замещены символами, а высказывания — сочетаниями символов (формулами). Создается исчисление, когда из одних знаковых сочетаний по фиксированным правилам можно получить другие» [22, с. 140]. При этом благодаря формализации оказывается выявленной такая информация, которая не улавливается на уровнях содержательного анализа [22, с. 142]. Понятно, что формализация затруднительна по отношению к сложным системам, отличающимся богатством и разнообразием связей.

После создания математической модели начинается ее применение для исследования некоторого реального процесса. При этом сначала определяется совокупность начальных условий и искомых величин. Здесь возможны несколько способов работы с моделью: аналитическое ее исследование посредством специальных преобразований и решением задач; использование численных методов решения, например метода статистических испытаний или метода Монте-Карло, методами имитационного моделирования случайных процессов, а также посредством применения для моделирования компьютерной техники.

При математическом моделировании сложных систем надо учитывать сложность системы. Как справедливо отмечает Н. П. Буслен-ко, сложная система является многоуровневой конструкцией из взаимодействующих элементов, объединенных в подсистемы различных уровней. Математическая модель сложной системы состоит из математических моделей элементов и математических моделей взаимодействия элементов [3, с. 54]. Взаимодействие элементов рассматривается обычно как результат совокупности воздействий каждого элемента на другие элементы. Воздействие, представленное набором своих характеристик, называется сигналом. Поэтому взаимодействие элементов сложной системы изучается в рамках механизма обмена сигналами. Сигналы передаются по каналам связи, располагающимися между элементами сложной системы. Они имеют входы и выходы [3, с. 59]. При построении математической модели системы учитывают ее взаимодействие с внешней средой. При этом обычно внешнюю среду представляют в виде некоторой совокупности объектов, воздействующих на элементы изучаемой системы. Значительную трудность представляет решение таких задач как отображение качественных переходов элементов и системы из одних состояний в другие, отображение переходных процессов.

Согласно Н. П. Бусленко [3, с. 61], механизм обмена сигналами как формализованная схема взаимодействия элементов сложной системы между собой или с объектами внешней среды включает в себя следующие составляющие:

  • процесс формирования выходного сигнала элементом, выдающим сигнал;
  • определение адреса передачи для каждой характеристики выходного сигнала;
  • прохождение сигналов по каналам связи и компоновка входных сигналов для элементов, принимающих сигналы;
  • реагирование элемента, принимающего сигнал, на поступивший входной сигнал.

Таким образом, посредством последовательных этапов формализации, «разрезания» исходной задачи на части осуществляется процесс построения математической модели.

Особенности кибернетического моделирования

Основы кибернетики заложил известный американский философ и математик профессор Массачусетского технологического института Норберт Винер (1894-1964) в работе «Кибернетика, или Управление и связь в животном и машине» (1948 г.)ссылка на второе издание книги, 1983г.. Слово «кибернетика» происходит от греческого слова, означающего «кормчий». Большая заслуга Н. Винера в том, что он установил общность принципов управленческой деятельности для принципиально различных объектов природы и общества. Управление сводится к передаче, хранению и переработке информации, т.е. к различным сигналам, сообщениям, сведениям. Основная заслуга Н. Винера заключается в том, что он впервые понял принципиальное значение информации в процессах управления. Ныне, по мнению академика А. Н. Колмогорова, кибернетика изучает системы любой природы, способные воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования.

Существует известный разброс в определении кибернетики как науки, в выделении ее объекта и предмета. Согласно позиции академика А. И. Берга, кибернетика представляет собой науку об управлении сложными динамическими системами. Основу категориального аппарата кибернетики составляют такие понятия, как «модель», « система», «управление», « информация». Неоднозначность определений кибернетики связана с тем, что разные авторы делают акценты на ту или иную базовую категорию. Например, акцентирование на категории «информация» заставляет рассматривать кибернетику как науку об общих законах получения, хранения, передачи и преобразования информации в сложных управляемых системах, а предпочтение категории «управление» — как науку о моделировании управления различными системами.

Подобная неоднозначность вполне правомерна, ибо она обусловлена полифункциональностью кибернетической науки, выполнением ею многообразных ролей в познании и практике. При этом акцентирование интересов на той или иной функции заставляет видеть всю науку в свете этой функции. Такая гибкость кибернетической науки говорит о ее высоком познавательном потенциале.

Современная кибернетика представляет собой неоднородную науку (рис. 21). Она объединяет в себе совокупность наук, которые исследуют управление в системах различной природы с формальных позиций.

Структура кибернетики

Рис. 21 — Структура кибернетики

Как отмечалось, кибернетическое моделирование строится на формальном отображении систем и их составляющих с помощью понятий «вход» и «выход», которые характеризуют связи элемента со средой. При этом каждый элемент характеризуется некоторым количеством «входов» и «выходов» (рис. 22).

Кибернетическое представление элемента

Рис. 22 — Кибернетическое представление элемента

На рис. 22 Х1, Х2,...Хм схематично показаны: «входы» элемента, Y1, Y2, Yjj — «выходы» элемента, а с1, с2,...,ск — его состояния. Потоки вещества, энергии, информации воздействуют на «входы» элемента, формируют на его состояния и обеспечивают функционирование на «выходах». Количественной мерой взаимодействия «входа» и «выхода» выступает интенсивность, которая представляет собой соответственно количество вещества, энергии, информации на единицу времени. Причем это взаимодействие непрерывное или дискретное. Теперь можно строить математические функции, которые описывают поведение элемента.

Кибернетика рассматривает систему как единство управляющих и управляемых элементов. Управляемые элементы называются управляемым объектом, а управляющие — управляющей системой. Структура управляющей системы строится по иерархическому принципу. Управляющая система и управляемая (объект) связаны между собой прямыми и обратными связями (рис. 23), а кроме того, каналами связи. Управляющая система по каналу прямой связи воздействует на управляемый объект, корректируя воздействия на него окружающей среды. Это приводит к изменению состояния объекта управления и он меняет свое воздействие на окружающую среду. Заметим, что обратная связь может быть внешней, как это показано на рис. 23, или внутренней, которая обеспечивает внутреннее функционирование системы, ее взаимодействие с внутренней средой.

Кибернетическая модель управления

Рис. 23 — Кибернетическая модель управления

Кибернетические системы представляют собой особый вид системы. Как отмечает Л. А. Петрушенко [18, с. 30], кибернетическая система удовлетворяет, по крайней мере, трем требованиям: «1) она должна иметь определенный уровень организованности и особую структуру; 2) быть поэтому способной воспринимать, хранить, перерабатывать и использовать информацию, т. е. представлять собой информационную систему; 3) обладать управлением по принципу обратной связи. Кибернетическая система — это динамическая система, представляющая собой совокупность каналов и объектов связи и обладающая структурой, позволяющей ей извлекать (воспринимать) информацию из своего взаимодействия со средой или другой системой и использовать эту информацию для самоуправления по принципу обратной связи».

Определенный уровень организованности означает:

  • интеграцию в кибернетической системе управляемой и управляющей подсистем;
  • иерархичность управляющей подсистемы и принципиальную сложность управляемой подсистемы;
  • наличие отклонений управляемой системы от цели или от равновесия, что приводит к изменению ее энтропии. Это предопределяет необходимость выработки управленческого воздействия на нее со стороны управляющей системы.

Информация — основа кибернетической системы, которая ее воспринимает, перерабатывает и передает. Информация представляет собой сведения, знания наблюдателя о системе, отражение ее меры разнообразия. Она определяет связи между элементами системы, ее «вход» и «выход». Информационный характер кибернетической системы обусловлен:

  • необходимостью получения информации о воздействии среды на управляемую систему;
  • важностью информации о поведении системы;
  • потребностью информации о строении системы.

Различные аспекты природы информации изучали Н. Винер, К. Шеннон, У. Р. Эшби, Л. Бриллюэн, А. И. Берг, В. М. Глушков, Н. М. Амосов, А. Н. Колмогоров и др. Философский энциклопедический словарь дает следующее толкование термина «информация» [25, с. 217]: 1) сообщение, осведомление о положении дел, сведения о чем-либо, передаваемые людьми; 2) уменьшаемая, снимаемая неопределенность как результат получения сообщения; 3) сообщение, неразрывно связанное с управлением, сигнал в единстве синтаксических, семантических и прагматических характеристик; 4) передача, отражение разнообразия в любых объектах и процессах (неживой и живой природы).

К наиболее важным свойствам информации следует отнести:

  • адекватность, т.е. соответствие реальным процессам и объектам;
  • релевантность, т.е. соответствие тем задачам, для решения которых она предназначена;
  • правильность, т.е. соответствие способа выражения информации ее содержанию;
  • точность, т.е. отражение соответствующих явлений с минимальным искажением или минимальной ошибкой;
  • актуальность или своевременность, т.е. возможность ее использования тогда, когда нужда в ней особенно велика;
  • всеобщность, т.е. независимость от отдельных частных изменений;
  • степень подробности, т.е. детальность информации.

Любая кибернетическая система представляет собой элементы, которые связаны информационными потоками. В ней имеются информационные ресурсы, осуществляется прием, переработка и передача информации. Система существует в определенной информационной среде, подвержена информационным шумам. К наиболее важным ее проблемам следует отнести: недопущение искажения информации при передаче и приеме (проблема детской игры в «глухой телефон»); создание языка информации, который был бы понятен всем участникам управленческих отношений (проблема общения); эффективного поиска, получения и использования информации в управлении (проблема использования). Комплекс этих проблем приобретает известную неповторимость и разнообразие в зависимости от специфики систем управления. Так, в информационных системах органов государственной власти, как отмечают Н. Р. Нижник и О. А. Машков, возникает необходимость разрешения таких проблем: создания службы информационных ресурсов органов государственной власти и государственного управления; создания правовой основы ее функционирования; формирования инфраструктуры; создания системы информационного мониторинга; создания системы информационного сервиса [16, с. 141].

Обратная связь представляет собой вид соединения элементов, когда связь между входом какого-либо элемента и выходом того же самого элемента осуществляется либо непосредственно, либо через другие элементы системы. Обратные связи бывают внутренние и внешние (рис. 24).

Внутренние и внешние связи в системе

Рис. 24 — Внутренние и внешние связи в системе

На рис. 24 1, 2 — элементы системы; 3 — внешняя обратная связь; 4 — внутренние обратные связи

Управление по принципу обратной связи представляет собой сложный процесс, который включает:

  • постоянный мониторинг функционирования системы;
  • сравнение текущего функционирования системы с целями системы;
  • выработку воздействия на систему для приведения ее в соответствие с целью;
  • внедрение воздействия в систему.

Обратные связи бывают положительными и отрицательными. При этом положительная обратная связь усиливает действие входного сигнала, имеет с ним одинаковый знак. Отрицательная же обратная связь ослабляет входной сигнал. Положительная обратная связь ухудшает устойчивость системы, поскольку выводит ее из равновесия, а отрицательная — способствует восстановлению равновесия в системе.

Немаловажную роль в кибернетическом моделировании играют представления о «черном», «сером» и «белом» ящиках. Под «черным ящиком» понимается кибернетическая система (объект, процесс, явление), относительно внутренней организации, структуры и поведения элементов которой наблюдатель (исследователь) не имеет никаких сведений, но есть возможность влиять на систему через ее входы и регистрировать ее реакции на выходе. Наблюдатель в процессе манипулирования входа и фиксации результатов на віходе составляет протокол испытаний, анализ которого позволяет осветлить «черный ящик», т.е. получить представление о его структуре и закономерностях преобразования сигнала «входа» в сигнал «выхода». Такой осветленный ящик получил название «серого ящика», который не дает, однако, полного представления о его содержании. Если наблюдатель полностью представляет содержание системы, ее строение и механизм преобразования сигнала, то она превращается в «белый ящик».

Оглавление    
Глава 8: Отражение систем наукой. «Моделирование систем различной природы» Список используемой и рекомендуемой литературы


Система Orphus

Яндекс.Метрика