Книги по системному анализу

Системный анализ

«Адаптивное управление сложными системами на основе теории распознавания образов»

В. С. Симанков, Е. В. Луценко

Оглавление    
Публикации на русском языке    

Публикации на английском языке

  1. Abe S., Lan M.-S., Thawonmas R. Tuning of a fuzzy classifier derived from data. — Int. J. Of Approx. Reasoning, 14, 1996, 1 — 24.
  2. Aczel J., Lectures on Functional Equations and Their Applications. New York: Academic Press, 1966.
  3. Adachi G., Furuhashi T., Uchikawa Y. An automatic design method of fuzzy controllers based on linguistic specifications and fuzzy model of controlled object, in: AMC'96-MIE, 144 — 149.
  4. Adachi G., Horikawa S.I., Furuhashi T., Uchikawa Y. A new linguistic design method of fuzzy controller using a description of dynamical behavior of fuzzy control systems, in: Proc. of the American Control Conf., Seattle, Washington, 1995, 2282 — 2286.
  5. Aho A.V., Hopcroft J.E., Ullman J.D. The Design and Analysis of Computer Algorithms. Massachusetts: Addison-Wesley, 1976.
  6. Ait Abderrahim K., Touseau C. Comparison of fuzzy logic and state feedback control of a nonlinear system, in: FLINS'94, 97 — 102.
  7. Aldenderfer M.S., Blashfield R.K. Cluster Analysis. Sage Publications, 1984.
  8. Almond R. G. Discussion: Fuzzy logic: better Science? Or better engineering? — Technometrics, v. 37, 3, 1995, 267 — 270.
  9. Alsina C. On a family of connectives for fuzzy sets. — Fuzzy Sets and Systems, 16, 1985, 231 — 235.
  10. Alsina C., Castro J.L., Trillas E. On the characterization of S and R implications, in: VI IFSA World Congress, Sao Paulo, Brazil, 1995, v.1, 317 — 319.
  11. Alsina C., Mayor G., Tomas M.S., Torrens J. A characterization of a class of a aggregation functions. — Fuzzy Sets and Systems, 53, 1993, 33 — 38.
  12. Alsina C., Trillas E. On uniformly close fuzzy preorders. — Fuzzy Sets and Systems, 53, 1993, 343 — 346.
  13. Alsina C., Trillas E., Valverde L. On some logical connectives for fuzzy sets theory. — J. Math. Anal. Appl., 93, 1983, 15-26.
  14. Ambrosio R., Martini G.B. Maximum and minimum between fuzzy symbols in non-interactive and weakly non-interactive situations. — Fuzzy Sets and Systems, 12, 1984, 27 — 35.
  15. Arora P.N. On characterizing some generalizations of Shannon's entropy. — Information Sciences, 21, 1980, 13 — 22.
  16. Atanassov K., Bustince H., Burillo P., Mohedano V. A method for inference in approximate reasoning for the one-dimensional case based on normal intuitionistic fuzzy sets. — Proceedings of VI IFSA World Congress, Sao Paulo, Brasil, 1995, v.1, 149 — 152.
  17. Bandler W., Kohout L. Fuzzy power sets and fuzzy implication operators//Fuzzy Sets and Systems. 1980. V. 4, 13-30.
  18. Barrett C.R., Pattanaik P.K., Salles M. On choosing rationally when preferences are fuzzy. — Fuzzy Sets and Systems, 1990, 34, 197 — 212.
  19. Basu K., Deb R., Pattanaik P.K. Soft sets: an ordinal formulation of vagueness with some applications to the theory of choice. — Fuzzy Sets and Systems, 45, 1992, 45 — 58.
  20. Batle N., Trillas E. Entropy and fuzzy integral. — J. Math. Anal.Appl., 69, 1979, 469 — 474.
  21. Batyrshin I. Measures of fuzziness and interval subalgebras of Kleene algebras//Uncertainty measures/Abstracts of 13th Linz Seminar on Fuzzy Set Theory. — Linz, Austria, 1991. — P. 12-13.
  22. Batyrshin I. Negation operations on a linearly ordered set of plausibility values. — 3d European Congress on Intelligent Techniques and Soft Computing, EUFIT'95. Aachen, Germany, 1995, v.2, 241 — 244.
  23. Batyrshin I., Fatkullina R. Fuzzy expert system for natural ecosystems, in: Space and Time in Environmental Information Systems. 9th International Symposium on Computer Science for Environmental Protection (Ed. by H. Kremers and W. Pillmann). Metropolis — Verlag, Marburg, 1995, Part II, 713 — 718.
  24. Batyrshin I., Kaynak O., Khabibulin R. Test generation for clustering algorithms, in: New Trends in Artificial Intelligence and Neural Networks (Ed. by T. Ciftcibasi, M. Karaman, V. Atalay), EMO Scientific Books, Ankara, 1997, 195 — 199.
  25. Batyrshin I., Khabibulin R. On construction of invariant relational clustering algorithms, in: Interactive Systems: The Problems of Human-Computer Interaction, (Ed. by P. Sosnin), Uljanovsk, 1997, v.2, 3 — 5.
  26. Batyrshin I., Khabibulin R. Testing of Clustering Algorithms on Invariance EUFIT'97, Aachen, Germany, 1997, pp. 1847-1851.
  27. Batyrshin I., Khabibulin R., Fatkullina R. Application of fuzzy relational clustering algorithms to ecological data, in: ICAFS-96, Second International Conference on Application of Fuzzy Systems and Soft Computing (Ed. by R.A. Aliev et al.). Siegen, Germany, 1996, 115 — 117.
  28. Batyrshin I., Wagenknecht M. Noninvolutive negations on [0,1]. — The Journal of Fuzzy Mathematics, vol. 5, N4, 1997, 997 — 1010.
  29. Batyrshin I., Wagenknecht M. The structure of noninvolutive negations on [0,1], in: IFSA'97 Prague. Seventh International Fuzzy Systems Association World Congress. Proceedings, ACADEMIA, Prague, 1997, vol. 1, 265 — 270.
  30. Batyrshin I.Z. Fuzzy relations in system analysis//Fuzzy Sets in Informatics/Moscow internation. conf. — Moscow, 1988. — P. 11-12.
  31. Batyrshin I.Z. Lexicographic estimates of the likelihood with universal bounds. II. Operations of negation. — Journal of Computer and Systems Sciences International, v. 34, n. 6, 1996, 44 — 59.
  32. Batyrshin I.Z. Negation operations for lexicographic valuations of plausibility, in: IPMU'96, Information Processing and Management of Uncertainty in Knowledge-Based Systems. Proceedings of Sixth International Conference, Granada, Spain, 1996, v. III, 1211 — 1216.
  33. Batyrshin I.Z. On fuzzinesstic measures of entropy on Kleene algebras. — Fuzzy Sets and Systems. — V. 34, 1, 1990. — P. 47-60.
  34. Batyrshin I.Z. Ordering operations and lexicographical estimates of likelihood in models of reasoning. — Soviet Journal of Computer and Systems Sciences, v. 30, n. 3, 1992, 103 — 114.
  35. Batyrshin I.Z., Khabibulin R.F. Testing of cluster algorithms for invariance with respect to numbering of objects. — Journal of Computer and Systems Sciences International, Vol. 36, N2, 1997, pp. 317 — 320.
  36. Batyrshin I.Z., Zakuanov R.A. On some generalization of Bellmann-Zadeh approach to decision making//Third Joint IFSA-EC and EURO-WG Workshop on Fuzzy Sets. Towards a unified fuzzy sets theory/ Abstracts.-Visegrad, Hungary, 11-13 December, 1990. — P. 9-10.
  37. Batyrshin Ildar Z. Uncertainties with memory in decision-making and expert systems. — Proceedings of the Fifth IFSA World Congress'93. Seoul, Korea, 1993, 737 — 740
  38. Batyrshin Ildar, Fatkullina Rimma. Context-dependent fuzzy scales and context-free rules for dependent variables. — IFSA'95. Proceedings of the Sixth International Fuzzy Systems Association World Congress. Sao Paulo, Brasil. July, 1995, v.1, 89 — 91.
  39. Batyrshin Ildar, Zakuanov Rinat, Bikushev Gani. Expert system based on algebra of uncertainties with memory in process optimization, in: Fuzzy Logic and Intelligent Technologies in Nuclear Science. Proceedings ot the 1st International FLINS Workshop, Mol, Belgium, 1994. (World Scientific, 1994), 156 — 159.
  40. Batyrshin Ildar, Zakuanov Rinat. Lexicographical valuations in decision-making and expert systems. — Proceedings of the First European Congress on Fuzzy and Intelligent Technologies EUFIT'93. Aachen, Germany, 1993, 1599-1602.
  41. Batyrshin Ildar. Errors of type 2 in cluster analysis and invariant cluster procedures based on similarity relations, in: Application of Fuzzy Systems, ICAFS-94 (Ed. by R. Aliev and R. Kenarangui) Univ. Press of Tabriz, Iran, 1994, 374-378.
  42. Batyrshin Ildar. Modus ponens generating function in the class of /\-valuations of plausibility, in: Tenth Annual Conference on Uncertainty in Artificial Intelligence, Seattle, Washington, 1994, 55-59.
  43. Bellman R., Kalaba R., Zadeh L.A. Abstraction and pattern classification. — Journal of Mathematical Analysis and Applications, 1966, v. 13, p. 1-7.
  44. Bellman R.E., Giertz M. On the analytic formalism of the theory of fuzzy sets. — Inf. Sci. — 1973. — V.5, 149-156.
  45. Bellman R.E., Zadeh L.A. Decision-making in a fuzzy environment. — Management Sci.,-1970. — V.17, 4, 141-164.
  46. Benferhat S., Cayrol C., Dubois D., Lang J., Prade H. Inconsistency management and prioritized syntax-based entailment. In: 13th Intern. Joint Conf. on Artificial Intelligence. Chambery, 640-645, 1993.
  47. Berenji H. R. A reinforcement learning — based architecture for fuzzy logic control. — Int. J. of Approx. Reasoning, 6, 1992, 267 — 292.
  48. Berger M. A new parametric family of fuzzy connectives and their application to fuzzy control. — Fuzzy Sets Syst., vol. 93, 1998, pp. 1-16.
  49. Bersini H., Bontempi G. Now comes the time to defuzzify neuro-fuzzy models. — Fuzzy Sets and Systems, 90, 1997, 161 — 169.
  50. Bezdek J.C. A note on generalized self-organizing network algorithms. — SPIE, vol. 1293, Applications of Artificial Intelligence VIII (1990), 260-267.
  51. Bezdek J.C. A note on two clustering algorithms for relational network data. — SPIE, vol. 1293, Applications of Artificial Intelligence VIII (1990), 268-277.
  52. Bezdek J.C. Fuzzy models and digital signal processing (for pattern recognition): is this a good marriage? — Digital Signal Processing, 3, 1993, 253 — 270.
  53. Birkhoff G. Lattice theory (Amer. Math. Soc., Providence, RI, 1967).
  54. Blanco A., Delgado M., Requena I. A learning procedure to identify weighted rules by neural networks. — Fuzzy Sets and Systems, 69, 1995, 29 — 36.
  55. Bonissone P.P. Discussion: Fuzzy logic control technology: a personal perspective. — Technometrics, v. 37, 3, 1995, 262 — 266.
  56. Bouyssou D. Acyclic fuzzy preference and the Orlovsky choice function: a note. — Fuzzy Sets and Systems, 89, 1997, 107 — 111.
  57. Buxton R. Modelling uncertainty in expert systems. — Int. J. Man-Machine Studies, V. 31, 1989, 415-476.
  58. Capocelli R., De Luca A. Fuzzy sets and decision theory. — Information and Control, 1973, v. 23, p. 446 — 473.
  59. Carlsson C., Fuller R. Fuzzy if-then rules for modeling interdependencies in FMOP problems. — Proceedings of the Second European Congress on Intelligent Techniques and soft Computing, Aachen, Germany, 1994, v. 3, 1253 — 1257.
  60. Castro J.L., Castro-Schez J.J., Zurita J.M. Learning with fuzzy logic, in: IPMU'96, Granada, 1996, 545 — 550.
  61. Castro J.L., Zurita J.M. An inductive learning algorithm in fuzzy systems. — Fuzzy Sets and Systems, 89, 1997, 193 — 203.
  62. Castro J.L., Zurita J.M., Trillas E. Expert systems validation, in: VI IFSA World Congress, Sao Paulo, razil, 1995, v. 1, 41-44.
  63. Cervinka O. Automatic tuning of parametric T-norms and T-conorms in fuzzy modeling, in Proc. 7th IFSA World Congress. Prague: ACADEMIA, 1997, vol. 1, pp. 416-421.
  64. Chakraborty M.K., Sarkar S., Das M. Some aspects of [0,1]-fuzzy relation and a few suggestions towards its use, in: M.M. Gupta, A. Kandel, W. Bandler, J.B. Kiszka (eds.). Approximate Reasoning in Expert Systems. Elsevier Science Publishers V.B. (North-Holland), 1985, 139 — 156.
  65. Cheeseman P. Discussion: Fuzzy thinking. — Technometrics, v. 37, 3, 1995, 282 — 283.
  66. Classification and Clustering (Ed. by J. Van Ryzin). Academic Press, 1977.
  67. Cordon O., Herrera F., Peregrin A. Applicability of the fuzzy operators in the design of fuzzy logic controllers. — Fuzzy Sets and Systems, 86, 1997, 15 — 41.
  68. Cunningham K.M., Ogilvie J.C. Evaluation of hierarchical grouping techniques: a preliminary study. — The Computer Journal, 15, 3, 209 — 213.
  69. D'Ambrosio B. Extending the Mathematics in Qualitative Process Theory. — Internat. J. of Intelligent Systems, 4, 1989, 55-80.
  70. Davison M.L. Multidimensional scaling. John Wiley & Sons, New York, 1983.
  71. De Baets B., Kerre E. Fuzzy inclusions and the inverse problems, in: Second European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, 1994, v.2, 940 — 945.
  72. De Baets B., Kerre E., Van der Walle B. Fuzzy preference structures and their characterization. — The Journal of Fuzzy Mathematics, 3, 2, 1995, 373 — 381.
  73. De Baets B., Mesiar R. Fuzzy partitions and their entropy, in: IPMU'96, Granada, 1996, 1419 — 1424.
  74. De Baets B., Van der Walle B. Weak and strong fuzzy interval orders. — Fuzzy Sets and Systems, 79, 1996, 213 — 225.
  75. De Cooman G. Non-truth-functional order norms, in: EUFIT'95, 1995, Aachen, 126 — 130.
  76. De Cooman G., Kerre E.E. Order norms on bounded partially ordered sets. — J. Fuzzy Mathematics, vol. 2, 1994, 281-310.
  77. De Cooman G., Ruan D., Ryjov A.P. FLINS-related activities in Russia. — — Fuzzy Sets and Systems, 74, 1995, 163 — 173.
  78. De Luca A., Termini S. A definition of a non-probabilistic entropy in the setting of fuzzy sets theory. — Information and Control, 1972, v. 20, p. 301 — 312.
  79. De Luca A., Termini S. Algebraic properties of fuzzy sets. — Journal of Mathematical Analysis and Applicationsa, 1972, v. 40, N. 2, 373-386.
  80. De Luca A., Termini S. Entropy of L-fuzzy sets. — Information and Control, 1974, v. 24, p. 55 — 73.
  81. De Luca A., Termini S. On the convergence of entropy measures of a fuzzy sets. — Kybernetes, v. 6, 1977, 219 — 227.
  82. Delgado M., Gomez-Skarmeta A.F. Vila A. On the use of hierarchical clustering in fuzzy modeling. Int. J. Of Approx. Reasoning, 14, 1996, 237 — 257.
  83. Di Nola A., Pedrycz W., Sessa S. Fuzzy relation equations and algorithms of inference mechanism in expert systems, in: M.M. Gupta, A. Kandel, W. Bandler, J.B. Kiszka (eds.). Approximate Reasoning in Expert Systems. Elsevier Science Publishers V.B. (North-Holland), 1985, 355 — 367.
  84. Di Nola A., Ventre A.G.S. On fuzzy implication in De Morgan Algebras//Fuzzy Sets and Systems. 1989. V. 33, 155-164.
  85. Diday E. et coll. Optimisation en classification automatique. INRIA, 1979.
  86. Dombi J. Basic concepts for a theory of evaluation: the aggregative operator. — European Journal of Operational Research, 10, 1982, 282 — 293.
  87. Dombi J. Membership function as an evaluation. — Fuzzy Sets and Systems, 35, 1990, 1 — 21. Dubois D., Fargier H., Prade H. Refining the maximin approach to decision-making in fuzzy environment. — Proceedings of VI IFSA World Congress, Sao Paulo, Brasil, 1995, v. 1, 313 — 316.
  88. Dombi J. Membership function as an evaluation. — Fuzzy Sets and Systems, 35, 1990, 1 — 21.
  89. Dombi J., Vas Z. Basic theoretical treatment of fuzzy connectives. — Acta Cybernet., v. 6, 1983, 191 — 201.
  90. Driankov D., Hellendoorn H. Reinfrank M. An Introduction to Fuzzy Control. Springer, Berlin, 1996. — 316.
  91. Dubois D., Esteva F., Garcia P., Godo L., Prade H. A logical approach to interpolation based on similarity realtions. — Report de Recerca IIIA 96/07, 1996, Barcelona.
  92. Dubois D., Lang J., Prade H. A possibilistic assumption-based truth maintenance system with uncertain justifications, and its application to belief revision. In J.P. Martins, M. Reinfrank (ed.), Truth Maintenagnce Systems. Proceedings of ECAI-90 Workshop. Stockholm, 1990, 87-106.
  93. Dubois D., Lang J., Prade H. Inconsistency in possibilistic knowledge bases. In L.A.Zadeh, J. Kacprzyk (eds.), Fuzzy Logic for the Management of Uncertainty. New York: John Wiley \& Sons, 1992, 335-351.
  94. Dubois D., Prade H. A review of fuzzy set aggregation connectives. — Information Sciences, 36, 1985, 85-121.
  95. Dubois D., Prade H. Fuzzy real algebra: some results. — Fuzzy Sets and Systems, 1979, 2, 327 — 348.
  96. Dubois D., Prade H. The three semantics of fuzzy sets. — Fuzzy Sets and Systems, 90, 1997, 141 — 150.
  97. Dubois D., Prade H., Ughetto L. Checking the coherence and redundancy of fuzzy knowledge bases. — IEEE Trans. on Fuzzy Systems, 5, 3, 1997, 398 — 417.
  98. Duda R. , Hart P. Pattern classification and scene analysis. New York, Wiley-Interscience, 1973.
  99. Dujet Ch., Vincent N. Force implication: a new approach to human reasoning. — Fuzzy Sets and Systems, 69, 1995, 53 — 63.
  100. Dumitrescu D. A definition of an informational energy in fuzzy sets theory. — Stud. Univ. Babes-Bolyai, Mathematica, 2, 1977, 57-59.
  101. Dunn J.C. A graph-theoretic analysis of pattern classification via Tamura's fuzzy relation , IEEE Trans. on Systems, Man and Cybernetics SMC-4 (1974), 310-313.
  102. Emptoz H. Nonprobabilistic entropies and indetermination measures in the setting of fuzzy sets theory. — Fuzzy Sets and Systems, 5, 1981, 307 — 317.
  103. ERUDIT Newsletter, N 1, 1995.
  104. ESPRIT — European strategic programme for research and development in information technology. Progress and results. — Luxemburg: Office for Official Publications of the European Communities, 1991. — 153 p.
  105. Esteva F. On Negations and Algebras in Fuzzy Set Theory. Report No. UCB/CSD 87/330, 1986, Berkeley, California.
  106. Esteva F., Trillas E., Domingo X. Weak and strong negation functions for fuzzy set theory. Proceedings of the Eleventh Int. Symp. on Multiple-Valued logic, Norman, 1981, pp. 23-26.
  107. Fargier H., Lang J., Schiex T. Selecting preferred solutions in fuzzy constraint satisfaction problems. In: Proc.of First European Congress on Fuzzy and Intelligent Technologies. Aachen, 1993, v.3, 1128-1134.
  108. Fishburn P.C. Utility Theory for Decision Making. New York: John Wiley & Sons, 1970.
  109. Fisher R.A. The use of multiple measurements in taxonomic problems. — Ann. Eugenics, 1936, September, v.7, 179 — 188.
  110. Fodor J., Roubens M., Fuzzy Preference Modelling and Multicriteria Decision Support. Dordrecht: Kluwer Academic Publishers, 1994.
  111. Fodor J.C, Roubens M. Aggregation of strict preference relations in MCDM procedures, in: Novak V., Mares M., Cerny M., Nekola J. (Eds.) Fuzzy Approach to Reasoning and Decision Making. Academia, Prague and Kluwer, Dordecht, 1992, 163 — 171.
  112. Fodor J.C. A new look at fuzzy connectives. — Fuzzy Sets and Systems, 57, 1993, 141 — 148.
  113. Fodor J.C. A remark on constructing t-norms. — Fuzzy Sets and Systems, 41, 1991, 195 — 199.
  114. Fodor J.C. An axiomatic approach to fuzzy preference modeling. — Fuzzy Sets and Systems, 52, 1992, 47 — 52.
  115. Fodor J.C. On fuzzy implication operators. — Fuzzy Sets and Systems, 42, 1991, 293 — 300.
  116. Fodor J.C. Strict preference relations based on weak t-norms. — Fuzzy Sets and Systems, 43, 1991, 327 — 336.
  117. Fodor J.C. Traces of fuzzy binary relations. — Fuzzy Sets and Systems, 50, 1992, 331 — 341.
  118. Forbus K.D. Qualitative Process Theory. — Artificial Intelligence, 24, 1984, N 1-3, 83-168.
  119. Forsyth R. (Ed.) Expert systems. Principles and case studies. — London: Chapman and Hall, 1984.
  120. Frank H. A new axiom system of fuzzy logic. — Fuzzy Sets and Systems, 77, 1996, 203 — 205.
  121. Frank M. J. On the simultaneous associativity of F(x,y) and x + y-F(x,y). — Aequat. Math. , vol. 19, pp. 194-226, 1979.
  122. FUBEST'94. The First Workshop on Fuzzy Based Expert Systems. Proceedings. Sofia, Bulgaria, 1994. — 143 p.
  123. Fung L.W., Fu K.S. An axiomatic approach to rational decision making in a fuzzy environment, in: Fuzzy Sets and their Applications to Cognitive and Decision Processes (Ed. by L.A. Zadeh, K.S. Fu, K. Tanaka, M. Shimura). — Academic Press, New York, 1975.
  124. Furuhashi T., Adachi G., Uchikawa Y. On description of dynamical behavior of fuzzy control systems and a linguistic design method of fuzzy controllers, in: ANNES: Artificial Neural Networks and Expert Systems, Dunedin, New Zealand, 1995, 160 — 163.
  125. Gaines B.R. Fuzzy and probability uncertainty logics. — Information and Control, 38, 1978, 154 — 169.
  126. Galuzzo M., Capellani V., Garofalo U. Fuzzy control of PH using NAL. — Intern. J. of Approximate Reasoning, 1991, 5, 505 — 519.
  127. Gisolfi A., Cicalese F. Classifying through a fuzzy algebraic structure. — Fuzzy Sets and Systems, 78, 1996, 317 — 331.
  128. Godo L.L., Lopez de Mantaras R., Sierra C., Verdaguer A. Managing Linguistically Expressed Uncertainty in MILORD Application on Medical Diagnosis. — AICOM, V.1, 1, 1988, 14-31.
  129. Goguen J.A. L-fuzzy sets. — J. Math. Anal. Appl. — 1967. — V.18. — P. 145-174.
  130. Gottwald S. Set theory for fuzzy sets of higher level. — Fuzzy Sets and Systems, 2, 1979, 125 — 151.
  131. Grabisch M., Nguyen H.T. Walker E.A. (Eds.) Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference. — Kluwer Academic Publishers. 1995. — 360 p.
  132. Gu T., Dubuisson B. Similarity of classes and fuzzy clustering. — Fuzzy Sets and Systems, 34, 1990, 213 — 221.
  133. Gupta K.C., Gupta R.K. Fuzzy equivalence relation redefined. — Fuzzy Sets and Systems, 79, 1996, 227 — 233.
  134. Gupta M.M, Sanchez E. (eds.). Approximate Reasoning in Decision Analysis. North-Holland Publishing Company, 1982.
  135. Gupta M.M., Kandel A., Bandler W., Kiszka J.B. (eds.). Approximate Reasoning in Expert Systems. Elsevier Science Publishers V.B. (North-Holland), 1985.
  136. Gupta M.M., Qi J. Design of fuzzy logic controllers based on generalized T-operators. — Fuzzy Sets and Systems, 40, 1991, 473 — 489.
  137. Gupta M.M., Qi J. Theory of T-norms and fuzzy inference methods. — Fuzzy Sets and Systems, 40, 1991, 431-450.
  138. Hall L.O. The choice of ply operator in fuzzy intelligent systems. — Fuzzy Sets and Systems.-1990.-V. 34, 135-144.
  139. Hasegawa T., Furuhashi T., Uchikawa Y. Stability analysis of fuzzy control systems based on petri nets, in: Proc. Int. Discourse on Fuzzy Logic and the Management of Complexity, FLAMOC'96, 1996, 191 — 195.
  140. Hasegawa T., Horikawa S.I., Furuhashi T., Uchikawa Y. On design of adaptive fuzzy controller using fuzzy neural networks and a description of its dynamical behavior. — Fuzzy Sets and Systems, 71, 1995, 3 — 23.
  141. Hasegawa T., Horikawa S.I., Furuhashi T., Uchikawa Y., Shimamura S., Yamada T., Kunitake O., Otsuka S. A study on fuzzy modeling of BOF using a fuzzy neural network., in: Proc. of the 2nd Int. Conf. on Fuzzy Logic and Neural Networks, Iizuka, Japan, 1992, 1061 — 1064.
  142. Hasegawa T., Horikawa S.I., Furuhashi T., Uchikawa Y., Shimamura S., Yamada T., Kunitake O., Otsuka S. An application of fuzzy neural network to fuzzy modeling of basic oxygen furnace, in: Proc. Of IEEE Int. Workshop on Neuro-Fuzzy Control, 1993, 133 — 138.
  143. Hashimoto H. Transitivity of generalized fuzzy matrices. — Fuzzy Sets and Systems, 17, 1985, 83 — 90.
  144. Henkind S.J., Harrison M.C. An analysis of four uncertainty calculi. — IEEE Trans. on Systems, Man, and Cybernetics, 18, 5, 1988, 700 — 714.
  145. Herrera F., Herrera-Viedma E., Verdegay J.L. A model of consensus in group decision making under linguistic assessments. — Fuzzy Sets and Systems, 78, 1996, 73 — 87.
  146. Herrera F., Herrera-Viedma E., Verdegay J.L. Direct approach process in group decision making using linguistic OWA operators. — Fuzzy Sets and Systems, 79, 1996, 175 — 190.
  147. Higashi M., Klir G.J. On measures of fuzziness and fuzzy complements. — Int. J. General Systems, 1982, Vol. 8, pp. 169-180.
  148. Hiraga I., Furuhashi T., Uchikawa Y., Nakayama S. An acquisition of operator's rules for collision avoidance using fuzzy neural networks. — IEEE Trans. on Fuzzy Systems, 3, 3, 1995, 280 — 287.
  149. Hirsch G., Lamotte M., Mas M.T., Vigneron M.J. Phonemic classification using a fuzzy dissimilitude relation. — Fuzzy Sets and Systems, 5, 267 — 275, 1981.
  150. Hohle U., Klement E.P. (Eds.) Non-Classical Logics and their Applications to Fuzzy Subsets. — Kluwer Academic Publishers. 1995. — 400 p.
  151. Hong T.-P., Lee C.-Y. Induction of rules and membership functions from training examples. — Fuzzy Sets and Systems, 84, 1996, 33 — 47.
  152. Horikawa S.I., Furuhashi T., Okuma S., Uchikawa Y. A fuzzy controller using a neural network and its capability to learn expert's control rules, in: Proceedings of the Int. Conf. On Fuzzy Logic & Neural Networks, Iizuka, Japan, 1990, 103 — 106.
  153. Horikawa S.I., Furuhashi T., Uchikawa Y. A new type of fuzzy neural network for linguistic fuzzy modeling, in: Proc. of the 2nd Int. Conf. on Fuzzy Logic and Neural Networks, Iizuka,Japan, 1992, 1053 — 1056.
  154. Horikawa S.I., Furuhashi T., Uchikawa Y. A new type of fuzzy neural network based on a truth space approach for automatic acquisition of fuzzy rules with linguistic hedges. — Int. J. Of Approx. Reasoning, 13, 1995, 249 — 268.
  155. Horikawa S.I., Furuhashi T., Uchikawa Y. On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm. — IEEE Trans. on Neural Networks, 3, 5, 1992, 801 — 806.
  156. Horikawa S.I., Furuhashi T., Uchikawa Y. On identification of structures in premises of a fuzzy model using a fuzzy neural networks, in: Second IEEE Int. Conf. On Fuzzy Systems, FUZZ-IEEE'93, 1993, 661-666.
  157. Horikawa S.I., Furuhashi T., Uchikawa Y., Tagawa T. A study on fuzzy modeling using fuzzy neural networks, in: Fuzzy Engineering toward Human Friendly Systems, IFES'91, 562 — 573.
  158. Horikawa S.I., Yamaguchi M., Furuhashi T., Uchikawa Y. Fuzzy control for inverted pendulum using fuzzy neural networks. — Journal of Robotics and Mechatronics, 7, 1, 1995, 36 — 44 (even pages !!?).
  159. Hubert L. J., Baker F.B. Experimental comparison of hierarchical grouping etalon models on r-diameter of confirming index, in: Classification and Clustering (Ed. by J. Van Ryzin). Academic Press, 1977. (Russian translation: Clussificatsija i cluster. — Moscow, Mir, 1980, 112-128.)
  160. Iancu I. T-norms with threshold. — Fuzzy Sets and Systems, 85, 1997, 83 — 92.
  161. Jacquet-Lagreze E. Modelling preferences among Distributions using Fuzzy Relations. The Fifth Research Conference on Subjective Propability, Utility and Decision Making. Darmstadt, Sept. 1-4, 1975.
  162. Jambu M. Classification Automatique Pour L'analyse des Donnees. Bordas. Paris, 1978.
  163. Jang J.S.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. — IEEE Trans. SMC, 23, 3, 1993, 665 — 685.
  164. Jang J.S.R., Sun C.T., Mizutani E. Neuro-Fuzzy and Soft Computing. A Computational Approach to Learning and Machine Intelligence. Prentice-Hall International, 1997. — 613 pp.
  165. Jardine N., Sibson R. Mathematical taxonomy. — London: John Wiley & Sons, 1971.
  166. Johnson N., Kotz S. Axiomatic approaches to formulas for combining likelihoods or evidence. C 310, in: J. of Stat. Computation and Simulation, 31, 1989, 49 — 54.
  167. Johnson S.C. Hierarchical clustering schemes. — Psychometrika, 1967, 32, 3, 241-254.
  168. Joint Hungarian-Japanese symposium on Fuzzy systems and applications. Extended abstracts/Ed. by L.T. Koczy and K. Hirota. — Budapest, 1991. — 173 p.
  169. Kalman J.A. Lattices with involution. — Trans. Amer. Math. Soc., 87, 1958, 485 — 491.
  170. Kandel A., Martins A., Pacheco R. Discussion: On the very real distinction between fuzzy and statistical methods. — Technometrics, v. 37, 3, 1995, 276 — 281.
  171. Karr C.L., Gentry E.J. Fuzzy control of pH using genetic algorithms. — IEEE Trans. On Fuzzy Systems, 1, 1, 1993, 46 — 53.
  172. Kaufmann A. Introduction a la theorie des sous-ensembles flous. Masson, Paris, 1977.
  173. Kaufmann A., Gupta M.M. Fuzzy Mathematical Models in Engineering and Management Science. Amsterdam: North-Holland,, 1988.
  174. Kaufmann A., Gupta M.M. Fuzzy Mathematical Models in Engineering and Management Science. Amsterdam: North-Holland,, 1988.
  175. Keeney R.L., Raiffa H. Decisions with Multiple Objectives: Preference and Value Tradeoffs. New Yor Keller J.M., Krishnapuram R., Chen Z., Nasraoui O. Fuzzy additive hybrid operators for network-based decision making. — Int. J. Intelligent Systems, 9, 1994, 1001 — 1023.
  176. Kimberling C. On a class of associative functions. — Publ. Math. Debrecen, v. 20, 1973, 21 — 39.
  177. King P.J., Mamdani E.H. «The application of fuzzy control systems to industrial processes,» Automatica, vol. 13, pp. 235-242, 1977.
  178. Kitainik L. Fuzzy Decision Procedures with Binary Relations. Towards a Unified Theory. — Kluwer, Boston, 1993. — 254 pp.
  179. Klawonn F., Kruse R. Derivation of fuzzy classification rules from multidimensional data.
  180. Klawonn F., Kruse R. Equality relations as a basis for fuzzy control. — Fuzzy Sets and Systems, 54, 1993, 147 — 156.
  181. Klawonn F., Nauck D., Kruse R. Generating rules from data by fuzzy and neuro-fuzzy methods, in: Proceedings of the Third German GI-Workshop «Fuzzy-Neuro-Systeme'95», Darmstadt, Germany, 1995.
  182. Klement E.P. Construction of fuzzy sigma-algebras using triangular norms. — J. Math. Anal. Appl., 85, 1982, 543-565.
  183. Klement E.P. Some mathematical aspects of fuzzy sets: triangular norms, fuzzy logics, and generalized measures. — Fuzzy Sets and Systems, 90, 1997, 133 — 140.
  184. Klement E.P., Mesiar R., Pap E. A characterization of the ordering of continuous t-norms. — Fuzzy Sets and Systems, 86, 1997, 189 — 195.
  185. Klement E.P., Mesiar R., Pap E. On the relationship of associative compensatory operators to triangular norms and conorms. — Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 2 (1996) 129-144.
  186. Klir G.J. A principle of uncertainty and information invariance. — Int. J. General Systems, 1990, Vol.17, pp. 249 — 275.
  187. Klir G.J. Where do we stand on measures of uncertainty, ambiguity, fuzziness, and the like? — Fuzzy Sets and Systems, 1987, 24, 141 — 160.
  188. Klir G.J., Folger T.A. Fuzzy Sets, Uncertainty, and Information. Prentice-Hall International,1988.
  189. Knopfmacher J. On measures of fuzziness. — Journal of Mathematical Analysis and Applications, 1975, v. 49, p. 529 — 534.
  190. Koczy L.T. Computational complexity of various fuzzy inference algorithms. — Annales Univ. Sci. Budapest., Sect. Comp. 12, 1991, 151 — 158.
  191. Kosko B. Fuzzy Engineering. Prentice-Hall, New Jersey, 1997. — 549 pp.
  192. Kosko B. Fuzzy systems as universal approximators. — IEEE Trans. On Computers, v. 43, 11, 1329 — 1333, 1994.
  193. Kovalerchuk B. Interpolation for fuzzy rules in expert and control systems, in: The First Workshop on Fuzzy Based Expert Systems. FUBEST'94. Sofia, Bulgaria, 1994, 101 — 103.
  194. Kruse R., Schwecke E., Heinsohn J. Uncertainty and vagueness in knowledge based systems. Numerical methods. Springer-Verlag, Berlin, 1991.
  195. Kruskal J. B. Multidimensional Scaling and cluster analysis, in: Classification and Clustering (Ed. by J. Van Ryzin). Academic Press, 1977. (Russian translation: Clussificatsija i cluster. — Moscow, Mir, 1980, 20-41.)
  196. Lance G.N., Williams W.T. A general theory of classificatory sorting strategies. I. Hierarchical systems. — Comput. J., 1969, 9, 4, 373 — 380.
  197. Laviolette M., Seeman J. W., Jr., Barrett J.D., Woodall W.H. A probabilistic and statistical view of fuzzy methods. — Technometrics, v. 37, 3, 1995, 249 — 261.
  198. Laviolette M., Seeman J. W., Jr., Barrett J.D., Woodall W.H. Reply. — Technometrics, v. 37, 3, 1995, 287 — 292.
  199. Lee C.C. Fuzzy logic in control systems: fuzzy logic controller, Part I. — IEEE Trans. SMC, 20, 2, 1990, 404 — 418; Part II. — IEEE Trans. SMC, 20, 2, 1990, 419 — 435.
  200. Lee N.S., Grize Y.L., Dehnad K. Quantitative models for reasoning under uncertainty in knowledge-based expert systems. — Int. J. of Intelligent Systems, 2, 1, 1987, 15 — 38.
  201. Lewis F.L., Liu K. Towards a paradigm for fuzzy logic control. — Automatica, 32, 2, 1996, 167 — 181.
  202. Li H.X., Gatland H.B., Green A.W. Fuzzy variable structure control. — IEEE Trans. SMC — Part B: Cybernetics, v. 27, N2, April 1997, 306 — 312.
  203. Li T.-Y., Yorke J.A. Period three implies chaos.
  204. Libert G., Roubens M. Non metric fuzzy clustering algorithms and their cluster validity, in: M.M. Gupta and E. Sanchez (eds.). Approximate Reasoning in Decision Analysis. North-Holland Publishing Company, 1982, 417 — 425.
  205. Lin C.T. Neural Fuzzy Control Systems with Structure and Parameter Learning. World Scientific, Singapore, 1994. — 127 pp.
  206. Lin C.-T., Lee C.S. G. Neural Fuzzy Systems. Prentice Hall, 1996.
  207. Ling C.H. Representation of associative functions. Publ. Math. Debrecen, vol. 12, pp. 189-212, 1965.
  208. Loo S.G. Measures of fuzziness. — Cybernetica, 20, 3, 1977, 201 — 210.
  209. Lopez de Mantaras R., Valverde L. New results in fuzzy clustering based on the concept of indistinguishability relation. — IEEE Trans. on Pattern Analysis and Machine Intelligence, 10, 5, 1988, 754 — 757.
  210. Lou S. P., Cheng W.C., Chao L.M. Two new methods in fuzzy cluster, in: M.M. Gupta and E. Sanchez (eds.). Approximate Reasoning in Decision Analysis. North-Holland Publishing Company, 1982, 427 — 430.
  211. Lowen R. On fuzzy complements. — Information Sciences, 14, 1978, 107 — 113.
  212. Matsushita S., Kuromiya A. Yamaoka M., Furuhashi T., Uchikawa Y. A stady on fuzzy GMDH with comprehensible fuzzy rules. IEEE Symp. On Emerging Technologies & Factory Automation, 1994, 192 — 198.
  213. Matsushita S., Kuromiya A. Yamaoka M., Furuhashi T., Uchikawa Y. Determination of antecedent structure for fuzzy modeling using genetic algorithm, in: Proc. ICEC'96, IEEE Intern. Conf. On Evolutionary Computation, Nagoya, Japan, 1996, 235 — 238.
  214. Matula D.W. Methods of graph theory in cluster analysis algorithms, in: Classification and Clustering (Ed. by J. Van Ryzin). Academic Press, 1977. (Russian translation: Clussificatsija i cluster. — Moscow, Mir, 1980, 83-111.)
  215. Mayor G. Sugeno's negations and t-norms. — Mathware & Soft Computing, 1, 1994, 93 — 98.
  216. Mayor G., Calvo T. Fractal negations. — Mathware & Soft Computing, 3, 1994, 277 — 283.
  217. Mazlack L.J., Flowers C. Unsupervised database discovery through dissonance reduction and uncertainty management to support knowledge extraction, in: IPMU-96, 1996, 917 — 922.
  218. Mesiar R. A note to the T-sum of L-R fuzzy numbers. — Fuzzy Sets and Systems, 79, 1996, 259 — 261.
  219. Michels K. Numerical stability analysis for a fuzzy or neural network controller. — Fuzzy Sets and Systems, 89, 1997, 335 — 350.
  220. Mizumoto M. Fuzzy controls under various fuzzy reasoning methods. — Information Sciences, 45, 1988, 129 — 151.
  221. Mizumoto M., Tanaka K. Some properties of fuzzy sets of type 2. — Information and Control, 31, 1976, 312 — 340.
  222. Morita Y., Oka Y.A fuzzy scale induced by intransitive ordering, in: M.M. Gupta and E. Sanchez (eds.). Approximate Reasoning in Decision Analysis. North-Holland Publishing Company, 1982, 139 — 150.
  223. Moulin H. Axioms of cooperative decision making. — Cambridge: Cambridge University Press, 1988.
  224. Mukaidono M. Representation of fuzzy data with fuzzy logic expressions, in: M.M. Gupta, A. Kandel, W. Bandler, J.B. Kiszka (eds.). Approximate Reasoning in Expert Systems. Elsevier Science Publishers V.B. (North-Holland), 1985, 369 — 381.
  225. Nakayama S., Horikawa S.I., Furuhashi T., Uchikawa Y. Knowledge acquisition of strategy and tactics using fuzzy neural networks, in: IJCNN92, Baltimore, 1992, II, 751 — 756.
  226. Nauck D. Beyond neuro-fuzzy: perspectives and directions, in: EUFIT'95, 1995, 1159 — 1164.
  227. Nauck D., Klawonn F., Kruse R. Fuzzy sets, fuzzy controllers, and neural networks. — Wissenschaftliche Zeitschrift der Humboldt-Universitat zu Berlin, Reihe Medizin, 41, Nr 4, 1992, 99 — 120.
  228. Nauck D., Kruse R. Choosing appropriate neuro-fuzzy models. In: Proceedings of the Second European Congress on Intelligent Techniques and Soft Computing EUFIT'94. — Aachen, Germany, 1994, v.1, 552 — 557.
  229. Negoita C.V., Ralesku D.A. Applications of fuzzy sets to systems analysis. — Basel: Birkhausner Verlag, 1975.
  230. Novak V. On the syntactico-semantical completeness of first-order fuzzy logic. Part 1. Syntax and Semantics. — Kybernetika, 26, 1, 1990, 47 — 66.
  231. Novak V. On the syntactico-semantical completeness of first-order fuzzy logic. Part 2. Main Results. — Kybernetika, 26, 2, 1990, 134 — 154.
  232. Novak V., Dvorak L. Linguistically oriented fuzzy logic control, its present stage and futher development, in: The First Workshop on Fuzzy Based Expert Systems, FUBEST'94. Sofia, Bulgaria, 101-103.
  233. Novak V., Ivanek J. The position of fuzzy logic in rule-based expert systems. — Proceedings of VI IFSA World Congress'95. — Sao Paulo, Brasil, 1995, v.1, 33 — 35.
  234. Nozaki K., Ishibuchi H., Tanaka H. A simple but powerful heuristic method for generating fuzzy rules from numerical data. — Fuzzy Sets and Systems, 86, 1997, 251 — 270.
  235. Ovchinnikov S.V. General negations in fuzzy set theory. — J. Math. Anal. Appl., 92, 1983, 234 — 239.
  236. Peng Y., Reggia J.A. Abductive Inference Models for Diagnostic Problem-Solving. Springer-Verlag, New-York, 1987.
  237. Preparata F.P., Yeh R.T. Continuously valued logic. — J. Comput. Syst. Sciences, 1972, 6, 397-418.
  238. Proceedings of the Fifth IFSA World Congress'93. — Seoul, Korea, v. 1-2, 1993. — 1421 pp.
  239. Proceedings of the First European Congress on Fuzzy and Intelligent Technologies EUFIT'93. — Aachen, Germany, v.1-3, 1993. — 1678 pp.
  240. Proceedings of the Second European Congress on Intelligent Techniques and Soft Computing EUFIT'94. — Aachen, Germany, 1994, v.1-3. — 1756 pp.
  241. Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (Ed. by R. Lopez de Mantaras and D. Poole), Seattle, 1994. — Morgan Kaufmann Publishers, San Francisco, 1994. — 616 p.
  242. Proceedings of Third IFSA-EC and Euro-WGFS Workshop on Fuzzy Sets.-Annales Univer. Sci. Budapest. Sect. Comp. 12, 1991. — 256 p.
  243. Ralescu A.L., Ralescu D.A. New concepts of fuzzy aggregation, in: VI IFSA World Congress, Sao Paulo, Brasil, 1995, 1, 301 — 304.
  244. Rasiowa H. An algebraic approach to non-classical logics. — Amsterdam: North-Holland, 1974.
  245. Rasmussen D., Yager R.R. Using summary SQL as a tool for finding fuzzy and gradual functional dependencies, in: IPMU-96, Granada, 1996, 275 — 287.
  246. Reed T.R. A review of recent texture segmentation and feature extraction techniques. — CVGIP: Image Understanding, v. 57, 3, 1993, 359 — 372.
  247. Reggia J.A., Nau D.S., Peng Y., Perricone B. A theoretical foundation for abductive expert systems, in: M.M. Gupta, A. Kandel, W. Bandler, J.B. Kiszka (eds.). Approximate Reasoning in Expert Systems. Elsevier Science Publishers V.B. (North-Holland), 1985, 459 — 472.
  248. Ribeiro R.A. Fuzzy multiple attribute decision making: a review and new preference elicitation techniques. — Fuzzy Sets and Systems, 78, 1996, 155 — 181.
  249. Rosenfeld A. Fuzzy groups. — J. of Mathematical Analysis and Applications, 35, 1971, 512 — 517.
  250. Roubens M. Choice procedures in fuzzy multicriteria decision analysis based on pairwise comparisons. — Fuzzy Sets and Systems, 84, 1986, 135 — 142.
  251. Roubens M. Fuzzy sets in preference modelling and decision analysis. — Proceedings of VI IFSA World Congress, Sao Paulo, Brazil, 1995, v.1, 19 — 24.
  252. Rousseeuw P.J. Discussion: Fuzzy clustering at the intersection. — Technometrics, v. 37, 3, 1995, 283 — 286.
  253. Roy B. Classement et choix en presence de points de vue multiples (la methode ELECTRE), Rev. Franc. d'Informatique et de Rech. Operat., 2, N 8, 1968, 57 — 75.
  254. Roychowdhury S. «New triangular operator generators for fuzzy systems,» IEEE Trans. Fuzzy Syst., vol. 5, pp. 189-198, 1997.
  255. Roychowdhury S. Connective generators for archimedian triangular operators. — Fuzzy Sets and Systems, vol. 94, 1998, pp. 367-384.
  256. Ruan D., Kerre E.E. Fuzzy implication operators and generalized fuzzy method of cases. — Fuzzy Sets and Systems, 54, 1993, 23 — 37.
  257. Ruspini E.H. On truth and utility. 297 — 304. — ???
  258. Ruspini E.H. Possibilistic data structures for the representation of uncertainty, in: M.M. Gupta and E. Sanchez (eds.). Approximate Reasoning in Decision Analysis. North-Holland Publishing Company, 1982, 411-416.
  259. Saaty T.L. Exploring the interface between hierarchies, multiple objectives and fuzzy sets. — Fuzzy Sets and Systems, 1978, v. 1, 57 — 68.
  260. Schweizer B. Multiplications on the space of probability distribution functions. — Aequationes Math., 12, 1975, 156 — 183.
  261. Schweizer B., Sklar A. Associative functions and abstract semigroups. — Publ. Math. Debrecen, v. 10, 1963, 69-81.
  262. Schweizer B., Sklar A. Associative functions and statistical triangle inequalities. — Publ. Math. Debrecen, v. 8, 1961, 169 — 186.
  263. Schweizer B., Sklar A. Probabilistic Metric Spaces. Amsterdam: North-Holland, 1983.
  264. Segapeli J.-L., Cavarero A., Cavarero J.-L. Building a hierarchy of classes from examples, in: IPMU-96, 1996, 265 — 270, Granada.
  265. Shortliffe E. Computer based medical consultations: MYCIN, (American Elsevier, New York, 1976).
  266. Silvert W. Symmetric summation: a class of operations on fuzzy sets. — IEEE Trans. on Systems, Man, and Cybernetics, v. SMC-9, N10, October 1979, 657 — 659.
  267. Skala H.J. On many-valued logics, fuzzy sets, fuzzy logics and their applications. — Fuzzy Sets and Systems, 1, 1978, 129 — 149.
  268. Smets P., Magrez P. Additive structure of the measures of information content, in: M.M. Gupta, A. Kandel, W. Bandler, J.B. Kiszka (eds.). Approximate Reasoning in Expert Systems. Elsevier Science Publishers V.B. (North-Holland), 1985, 195 — 197.
  269. Sokal R.R. Cluster analysis and classification: general directions, in: Classification and Clustering (Ed. by J. Van Ryzin). Academic Press, 1977. (Russian translation: Clussificatsija i cluster. — Moscow, Mir, 1980, 7-19.)
  270. Srihari S.N. On choosing measurements for invariant pattern recognition. — Information Sciences, 21, 1980, 1 — 11.
  271. State L. Quelques proprietes des algebres De Morgan, in: G.C. Moisil (Ed.) Logicue, Automatique, Informatique (Bucharest, 1971) 195 — 207.
  272. Stephanou H.E., Sage A.P. Perspectives on inperfect information. — IEEE Trans. on Systems, Man, and Cybernetics, 17, 5, 1987, 780 — 798.
  273. Sugeno M. An introductory survey of fuzzy control. — Information Sciences, 36, 1985, 59 — 83.
  274. Sugeno M., Park G.-K. An approach to linguistic instruction based learning. — Intern. J. of Uncertainty, Fuzziness and Knowledge-Based Systems, v. 1, N 1, 1993, 19-56.
  275. Takagi T., Imura A., Ushida H., Yamaguchi T. Conceptual fuzzy sets as a meaning representation and their inductive construction. — Int. J. of Intelligent Systems, 10, 1995, 929 — 945.
  276. Takagi T., Sugeno M. Fuzzy identificaton of systems and its applications to modeling and control. — IEEE Trans. SMC, 15, N1, 1985, 116 — 132.
  277. Takeda E. Connectivity in Fuzzy graphs. — Technol. Repts. Osaka Univ., 23, 1973. 343-352.
  278. Tamura S., Higuchi S., Tanaka K. Pattern classification based on fuzzy relations. — IEEE Trans. on Systems, Man and Cybernetics SMC-1 (1971), 61-66.
  279. Tay T.T., Tan S.W. Fuzzy system as parameter estimator of nonlinear dynamic functions. — IEEE Trans. SMC — Part B: Cybernetics, V. 27, N2, April 1997, 313 — 326.
  280. Thole U., Zimmermann H.-J., Zysno P. On the suitability of minimum and product operators for the intersection of fuzzy sets. — Fuzzy Sets and Systems, 2, 1979, 167 — 180.
  281. Torra V. Negation functions based semantics for ordered linguistic labels. — Int. J. of Intelligent Systems, 11, 1996, 975 — 988.
  282. Trillas E. «Sobre funciones de negacion en la teoria de conjuntos difusos,» Stochastica, vol. 3, pp. 47-59, 1979.
  283. Trillas E., Alsina C., Valverde L. Do we need max, min and 1-j in fuzzy set theory?, in: Fuzzy Set and Possibility Theory/Ed. by R.R. Yager. New York: Pergamon Press, 1982, p. 275-297.
  284. Trillas E., Riera T. Entropies in finite fuzzy sets. — Information Sciences, 15, 1978, 159 — 168.
  285. Trillas E., Valverde L. On mode and implication in approximate reasoning, in: M.M. Gupta, A. Kandel, W. Bandler, J.B. Kiszka (eds.). Approximate Reasoning in Expert Systems. Elsevier Science Publishers V.B. (North-Holland), 1985, 157 — 166.
  286. Turksen I.B. «Unified fuzzy system modeling,» in New Trends in Artificial Intelligence and Neural Networks, Ciftcibasi, Karaman and Atalay, Eds. Ankara: EMO Sci. Books, pp. 5-19, 1997.
  287. Uncertainty in Artificial Intelligence. Proceedings of the Tenth Conference (Ed. by R. Lopez de Mantaras and D. Poole), 1994. — 616 p.
  288. Valverde L. On the structure of F-indistinguishability operators.-Fuzzy Sets and Systems, 17, 1985, 313 — 328.
  289. Valverde L., Trillas E. On modus ponens in fuzzy logic, in: The International Sysmposium on Multiple-Valued Logic (Kingston, Ontario, Canada 1985).
  290. Verbruggen H.B., Bruijn. Fuzzy control and conventional control: what is (and can be) the real contribution of fuzzy systems? — Fuzzy Sets and Systems, 90, 1997, 151 — 160.
  291. Voxman W., Goetschell R. A note on the characterization of the max and min operators. — Information Sciences, 30, 1983, 5 — 10.
  292. Wagenknecht M. On pseudo-transitive approximations of fuzzy relations. — Fuzzy Sets and Systems, 44, 1991, 45 — 55.
  293. Wagenknecht M. Unfuzzy non-dominated elements in fuzzy collective choice problems. — The Journal of Fuzzy Mathematics, v. 2, N4, 1994, 835 — 845.
  294. Wagenknecht M., Batyrshin I. On negations generated by compensations, in: International Workshop on Soft Computing, SC — 96, Proceedings (Ed. by I. Batyrshin and D. Pospelov), Kazan, Russia, 1996, 59 — 66.
  295. Wang L., Mendel J.M. Fuzzy basis functions, universal approximation and orthogonal least-squares learning. — IEEE Trans. on Neural Networks, v. 3, 5, 807 — 814, 1992.
  296. Wang L.-X. Combining mathematical model and heuristics into controllers: an adaptive fuzzy control approach. — Fuzzy Sets and Systems, 89, 1997, 151 — 156.
  297. Wang L.-X. Fuzzy systems are universal approximators, in: Proceedings of the IEEE Int. Conf. On Fuzzy Systems, San Diego, 1992.
  298. Wang X. An investigation into relations between some transitivity-related concepts. — Fuzzy Sets and Systems, 89, 1997, 257 — 262.
  299. Watanabe S. Fuzzification and invariance. — Proc. Int. Conf. Cybern. and Soc. Tokyo — Kyoto, 1978, v. 2-3, 947 — 951.
  300. Watkins F.A. Comments on Singh and Zeng:»Approximation theory of fuzzy systems — SISO case». — IEEE Trans. on Fuzzy Systems, 4, 1, 1996, 80 — 81.
  301. Weber S. A modification of Lukasiewicz logic and its applications to fuzziness and distances, in: M.M. Gupta, A. Kandel, W. Bandler, J.B. Kiszka (eds.). Approximate Reasoning in Expert Systems. Elsevier Science Publishers V.B. (North-Holland), 1985, 123 — 137.
  302. Weber S.A. A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms. — Fuzzy Sets and Systems. v. 11, N 2, 1983, p. 115-134.
  303. Whalen T. Exact solutions for interacting rules in generalized modus ponens with parameterized implication functions. — Information Sciences, 92, 1996, 211 — 232.
  304. Windham M.P. Numerical classification of proximity data with assignment measures. — J. of Classification, 2, 157-172 (1985).
  305. Wu W., Teh H.H. Reasoning with propositional knowledge based on fuzzy neural logic. — Int. J. of Intelligent Systems, 11, 1996, 251 — 265.
  306. Yager R.R. A note on fuzziness in a standard uncertainty logic. — IEEE Trans. Systems, Man, Cybernet. 1979. V. 9, 387-388.
  307. Yager R.R. A unified approach to aggregation based upon MOM and MAM operators. — Int. J. of Intelligent Systems, 10, 1995, 809 — 855.
  308. Yager R.R. Cardinality of fuzzy sets via bags. — Mathl. Modelling, 9, 6, 1987, 441-446.
  309. Yager R.R. Comments to «Textured Sets: An Approach to Aggregation Problems with Multiple Concerns». — IEEE Trans. on Systems, Man, and Cybernetics, v. SMC — 11, 10, October 1981, 730 — 731.
  310. Yager R.R. Constrained OWA aggregation. — Fuzzy Sets and Systems, 81, 1996, 89 — 101.
  311. Yager R.R. Finite linearly ordered fuzzy sets with applications to decisions. — Int. J. Man-Machine Studies, 12, 1980, 299 — 323.
  312. Yager R.R. On a class of weak triangular norm operators. — Information Scienes, 96, 1997, 47 — 78.
  313. Yager R.R. On the measure of fuzziness and negation. II. Littices. — Information and Control, 44, 1980, 236 — 260.
  314. Yager R.R. On the theory of bags. — Int. J. General Systems, 13, 1986, 23 — 37
  315. Yager R.R., Larsen H.L. Retrieving Information by Fuzzification of Queries. — Journal of Intelligent Information Systems, v.2, N 4, 1993, 421-441.
  316. Yager R.R., Rybalov A. Noncommutative self-identity aggregation. — Fuzzy Sets and Systems, 85, 1997, 73 — 82.
  317. Yager R.R., Rybalov A. Uninorm aggregation operators. — Fuzzy Sets and Systems, 1996, 80, 111 — 120.
  318. Yamakawa T., Miki T. «The current mode fuzzy logic integrated circuits fabricated by the standard CMOS process,» IEEE Trans. Comput., vol. 35, pp. 161-167, 1986.
  319. Yang Z., Zhou X. A sufficient and necessary condition for an OWA bag mapping having the self-identity. — Fuzzy Sets and systems, 90, 1997, 327 — 334.
  320. Yazenin A.V., Wagenknecht M. Non-dominated elements and fuzzy scalarizing functions in vector optimization. — The Journal of Fuzzy Mathematics, v. 2, No. 3, 1994, 565 — 578.
  321. Yazici A., Aksoy D., George R. The similarity-based fuzzy object-oriented data model, in: IPMU-96, v. III, 1996, 1177 — 1182.
  322. Yehia S.E. Fuzzy partitions and fuzzy-quotient rings. — Fuzzy Sets and Systems, 54, 1993, 57 — 62.
  323. Yen J., Wang L. Constructing optimal fuzzy models using statistical information criteria, in: Proc. Int. Symp. Artificial Intelligence, Mexico, 1996, 395 — 402.
  324. Yen J., Wang L. Improving the interpretability of TSK fuzzy models by combining global learning and local learning.
  325. Yen J., Wang L. Integrated structure and parameter identification of fuzzy models using backpropagation and singular value decomposition.
  326. Yen J., Wang L. Simplification of fuzzy rule based systems using orthogonal transformation, in: Proc. IEEE Int. Conf. Fuzzy Systems. Barcelona, Spain, July, 1997.
  327. Ying H. A nonlinear fuzzy controller with linear control rules is the sum of a global two-dimensional multivalued relay and a local nonlinear proportional-integral controller. — Automatica, 29, 2, 1993, 499 — 505.
  328. Ying H. General analytical structure of typical fuzzy controllers and their limiting structure theorems. — Automatica, 29, 4, 1993, 1139 — 1143.
  329. Ying H. The simplest fuzzy controllers using different inference methods are different nonlinear proportional-integral controllers with variable gaines. — Automatica, 29, 6, 1993, 1579 — 1589.
  330. Yuan B., Wu W. Fuzzy ideals on a distributive lattice. — Fuzzy Sets and Systems 35 (1990) 231-240.
  331. Zadeh L. A. Fuzzy logic = computing with words. — IEEE Trans. on Fuzzy Systems, v. 4, 2, 1996, 103 — 111.
  332. Zadeh L.A. A fuzzy-set-theoretic interpretation of linguistic hedges. — Journal of Cybernetics. — 1972, 2, 3, 4 — 34.
  333. Zadeh L.A. Discussion: Probability theory and fuzzy logic are complementary rather than competitive. — Technometrics, v. 37, 3, 1995, 271 — 276.
  334. Zadeh L.A. Fuzzy algorithms. — Information and Control. — 1968. — 12, 94 — 102.
  335. Zadeh L.A. Fuzzy Languages and their relation to human and machine Intelligence, in: Proc. Int. Conference on Man and Computers. 1970. Basel (Ed. by S. Karger) 1972, 130-165.
  336. Zadeh L.A. Fuzzy sets and their application to pattern clasification and cluster analysis, in: Classification and Clustering (Ed. by J. Van Ryzin). Academic Press, 1977. (Russian translation: Clussificatsija i cluster. — Moscow, Mir, 1980, 208-247)
  337. Zadeh L.A. Fuzzy sets as a basis for a theory of possibility. — Fuzzy Sets and Systems, 1, 1978, 3 — 28.
  338. Zadeh L.A. Fuzzy sets. — Information and Control. — 1965. — 8, 3, 338-353.
  339. Zadeh L.A. New frontiers in fuzzy logic. — Proceedings of VI IFSA World Congress, Sao Paulo, Brasil, 1995, v.1, 1 — 2.
  340. Zadeh L.A. Outline of a new approach to the analysis of complex systems and decision processes. — IEEE Trans. Syst. Man. Cybern. — 1973, 1, 28-44.
  341. Zadeh L.A. Quantitative fuzzy semantics. — Information Sciences. — 1971, 3, 159-176.
  342. Zadeh L.A. Similarity relations and fuzzy orderings. — Inform. Sciences. — 1971. — V.3. — P. 177-200.
  343. Zadeh L.A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. — Fuzzy Sets and Systems, 90, 1997, 111 — 127.
Оглавление    
Публикации на русском языке    


Система Orphus

Яндекс.Метрика